Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Bacterial diversity can be overwhelming. There is an ever-expanding number of bacterial taxa being discovered, but many of these taxa remain uncharacterized with unknown traits and environmental preferences. This diversity makes it challenging to interpret ecological patterns in microbiomes and understand why individual taxa, or assemblages, may vary across space and time. While we can use information from the rapidly growing databases of bacterial genomes to infer traits, we still need an approach to organize what we know, or think we know, about bacterial taxa to match taxonomic and phylogenetic information to trait inferences. Inspired by the periodic table of the elements, we have constructed a ‘periodic table’ of bacterial taxa to organize and visualize monophyletic groups of bacteria based on the distributions of key traits predicted from genomic data. By analyzing 50,745 genomes across 31 bacterial phyla, we used the Haar-like wavelet transformation, a model-free transformation of trait data, to identify clades of bacteria which are nearly uniform with respect to six selected traits - oxygen tolerance, autotrophy, chlorophototrophy, maximum potential growth rate, GC content and genome size. The identified functionally uniform clades of bacteria are presented in a concise ‘periodic table’-like format to facilitate identification and exploration of bacterial lineages in trait space. While our approach could be improved and expanded in the future, we demonstrate its utility for integrating phylogenetic information with genome-derived trait values to improve our understanding of the bacterial diversity found in environmental and host-associated microbiomes.more » « lessFree, publicly-accessible full text available July 17, 2026
-
The genusPseudogymnoascusincludes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species ofPseudogymnoascus—P. russussp. nov.,P. irelandiaesp. nov., andP. ramosussp. nov.—isolated from Antarctic soils. These species represent the firstPseudogymnoascustaxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades:P. irelandiaein clade K,P. ramosusin clade Q, andP. russusin clade B. These results provide further evidence of the extensive undescribed diversity ofPseudogymnoascusin high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi.more » « lessFree, publicly-accessible full text available March 21, 2026
-
The genusPseudogymnoascusincludes several species frequently isolated from extreme environments worldwide, including cold environments such as Antarctica. This study describes three new species ofPseudogymnoascus—P. russussp. nov.,P. irelandiaesp. nov., andP. ramosussp. nov.—isolated from Antarctic soils. These species represent the firstPseudogymnoascustaxa to be formally described from Antarctic soil samples, expanding our understanding of fungal biodiversity in this extreme environment. Microscopic descriptions of asexual structures from living cultures, along with measurements of cultural characteristics and growth on various media types at different temperatures, identify three distinct new species. In addition, phylogenetic analyses based on five gene regions (ITS, LSU, MCM7, RPB2, TEF1) and whole-genome proteomes place these new species within three distinct previously described clades:P. irelandiaein clade K,P. ramosusin clade Q, andP. russusin clade B. These results provide further evidence of the extensive undescribed diversity ofPseudogymnoascusin high-latitude soils. This study contributes to the growing body of knowledge on Antarctic mycology and the broader ecology of psychrophilic and psychrotolerant fungi.more » « lessFree, publicly-accessible full text available March 21, 2026
-
Abstract Antarctic soils are unique from those found nearly anywhere else on Earth yet can still harbor a broad diversity of microorganisms able to tolerate the challenging conditions typical of the continent. For these reasons, microbiologists have been drawn to Antarctica for decades. However, our understanding of which microbes thrive in Antarctic soils and how they to do so remains limited. To help resolve these knowledge gaps, we analyzed a collection of 200 archived Antarctic soils—from Livingston Island on the Antarctic Peninsula to Cape Hallett in northern Victoria Land. We analyzed the prokaryotic and fungal communities in these soils using both cultivation-independent marker gene sequencing and cultivation-dependent approaches (microbial isolation), paired with extensive soil geochemical analyses. Our cultivation-independent analyses indicate that colder, saltier, and drier soils harbor less diverse communities of bacteria and fungi, distinct from those found in soils with less challenging conditions. We also built a culture collection from a subset of these soils that encompasses more than 50 bacterial and fungal genera, including cold-tolerant organisms, such asCryobacteriumandCryomyces. By directly comparing the diversity of our cultured isolates against our cultivation-independent data, we show that many of the more abundant Antarctic taxa are not readily cultivated and highlight bacterial and fungal taxa that should be the focus of future cultivation efforts. Together, we hope that our collection of isolates, the comprehensive data compiled from the cultivation-independent analyses, and our geochemical analyses will serve as a community resource to accelerate the study of Antarctic soil microbes.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Genomic information is now available for a broad diversity of bacteria, including uncultivated taxa. However, we have corresponding knowledge on environmental preferences (i.e. bacterial growth responses across gradients in oxygen, pH, temperature, salinity, and other environmental conditions) for a relatively narrow swath of bacterial diversity. These limits to our understanding of bacterial ecologies constrain our ability to predict how assemblages will shift in response to global change factors, design effective probiotics, or guide cultivation efforts. We need innovative approaches that take advantage of expanding genome databases to accurately infer the environmental preferences of bacteria and validate the accuracy of these inferences. By doing so, we can broaden our quantitative understanding of the environmental preferences of the majority of bacterial taxa that remain uncharacterized. With this perspective, we highlight why it is important to infer environmental preferences from genomic information and discuss the range of potential strategies for doing so. In particular, we highlight concrete examples of how both cultivation-independent and cultivation-dependent approaches can be integrated with genomic data to develop predictive models. We also emphasize the limitations and pitfalls of these approaches and the specific knowledge gaps that need to be addressed to successfully expand our understanding of the environmental preferences of bacteria.more » « less
-
Abstract Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum—from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the “slow lane.” However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.more » « less
-
Adams, Byron J (Ed.)This data package offers comprehensive insights into Antarctic soil microbial diversity and composition. From 2003 to 2023, a total of 186 samples were collected from diverse locations spanning the Antarctic Peninsula to East Antarctica, representing a wide range of environmental gradients and climatic conditions. Soils were stored at -20°C to preserve their integrity for downstream analyses. This data package integrates cultivation-independent sequencing of prokaryotic and fungal communities alongside a robust cultivation-dependent culture collection to enable direct comparisons across microbial diversity assessment methods. Accompanying geochemical, physicochemical, and environmental parameters provide critical context for biogeographical analyses, offering a valuable resource for studying microbial adaptations and community dynamics in extreme Antarctic environments.more » « less
-
Abstract Flagellar motility is a key bacterial trait as it allows bacteria to navigate their immediate surroundings. Not all bacteria are capable of flagellar motility, and the distribution of this trait, its ecological associations, and the life history strategies of flagellated taxa remain poorly characterized. We developed and validated a genome-based approach to infer the potential for flagellar motility across 12 bacterial phyla (26 192 unique genomes). The capacity for flagellar motility was associated with a higher prevalence of genes for carbohydrate metabolism and higher maximum potential growth rates, suggesting that flagellar motility is more prevalent in environments with higher carbon availability. To test this hypothesis, we applied a method to infer the prevalence of flagellar motility in whole bacterial communities from metagenomic data and quantified the prevalence of flagellar motility across four independent field studies that each captured putative gradients in soil carbon availability (148 metagenomes). We observed a positive relationship between the prevalence of bacterial flagellar motility and soil carbon availability in all datasets. Since soil carbon availability is often correlated with other factors that could influence the prevalence of flagellar motility, we validated these observations using metagenomic data from a soil incubation experiment where carbon availability was directly manipulated with glucose amendments. This confirmed that the prevalence of bacterial flagellar motility is consistently associated with soil carbon availability over other potential confounding factors. This work highlights the value of combining predictive genomic and metagenomic approaches to expand our understanding of microbial phenotypic traits and reveal their general environmental associations.more » « less
An official website of the United States government
